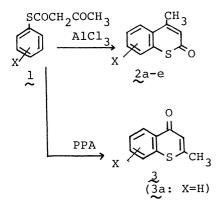
A CONVENIENT SYNTHESIS OF 4-METHYL-2H-1-BENZOTHIOPYRAN-2-ONES (4-METHYLTHIO-COUMARINS)


Hiroyuki NAKAZUMI, Akira ASADA, and Teijiro KITAO Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591

4-Methyl-2H-l-benzothiopyran-2-ones (4-methylthiocoumarins) were conveniently prepared by the reaction of S-phenyl 3-oxobutanethioates with aluminium chloride. The spectral characteristics of these compounds were summarized.

It is well known that 2H-1-benzothiopyran-2-ones (thiocoumarins) can not be obtained by the Pechmann reaction of benzenethiols. Thiocoumarins are generally prepared from the unstable 2-mercaptobenzaldehydes which require multistage processes from benzenethiol derivatives. Recently, it has been reported that thiocoumarins are prepared from 2-t-butylthiobenzaldehyde by two steps. The spectral characteristics of 4-methylthiocoumarins are very little known. In a previous paper, we reported a method to prepare the thiocoumarin by the cyclization of S-phenyl 3-oxobutanethioates 1, which were obtained by the reaction of benzenethiols and diketene, with polyphosphoric acid (PPA). But in most those cases, isomeric 2-methylthiochromone derivatives 3 were exclusively obtained. We studied the reaction of 1 with various condensing agents to prepare 4-methylthiocoumarins 2.

We now found that some of 4-methylthiocoumarins 2 were conveniently obtained when aluminium chloride was used as a condensing agent in the cyclization of S-phenyl 3-oxobutanethioates 1. 4-Methylthiocoumarin 2a was prepared from compound 1 as follows: Compound 1(X=H) was added to the suspension of $AlCl_3$ in CS_2 or to $AlCl_3$. After stirring for 2 h or 5 h at reaction temperature shown in Table 1, the mixture was poured into cold water. The resulting solid was separated and recrystallized from EtOH. In any cases in Table 1, no 2-methylthiochromone 3a was obtained.

Table 1. The reaction of S-phenyl 3-oxobutanethioate $\frac{1}{\sim}$ (X=H) with AlCl3

Entry	Solvent	Tempt (°C)	Reaction time (h)	AlCl ₃ (mole ratio)	Yield of 2a (%) ∼
1	CS ₂	46	2	10	29
2	cs ₂	46	5	2	trace
3	cs ₂	46	5	10	38
4	-	80-90	2	10	48
5	-	140-150	2	10	24

Other 4-methylthiocoumarin derivatives 2b-2e could be prepared by the same method for 2a (Entry 4) (2b: 42%, 2c: 31%, 2d: 16%, 2e: 22%). However, the reaction of methoxyl derivatives of S-phenyl 3-oxobutanethioates $\frac{1}{2}$ (X=2,5-dimethoxy and \underline{p} - or \underline{m} - methoxy) with AlCl, gave only an oily undetermined material, and any of thiocoumarins were not isolated. When ${\rm ZnCl}_2$ was used as a condensing agent for $1 \over {\rm C}$ (X=H), thianthrene was obtained in 11% yield. In the cases of other condensing agents such as PCl_5 , P_2O_5 , and Ac20, oily undetermined materials were obtained. The spectral data and mp of new compounds 2d and 2e were as follows: 2d; mp 167-169°C, γ co 1650 and 1630 cm⁻¹, NMR(CDCl₃) δ =2.65(3H,s), 6.68 (1H,s), and 7.48-8.37 (6H,m), λ max (EtOH) 275nm (£2.6x10⁴) and 286nm $(£2.5x10^4)$, 2e; mp 157-158°C, Vco 1645 cm⁻¹, NMR(CDCl₃) δ =2.54 (3H,s), 6.57 (1H,s), 7.50 (2H,m), and 7.80 (1H,m), λ max (EtOH) 233nm (£2.8x10⁴), 241nm (£2.9x10⁴), 290nm $(\xi_{1.2}\times10^4)$, and 30lnm $(\xi_{1.0}\times10^4)$. The spectral characteristics of 4-methylthiocoumarins were as follows: Mass spectra; The major fragmentation was initial loss of carbon monoxide from the molecular ion, followed by the loss of a hydrogen atom leading to the formation of the ring-expanded thianaphthalenium ion $(M \rightarrow [M-28] \rightarrow [M-29])$ (Scheme 1 and Table 2). NMR spectra; The benzenoid proton in 5-position of 4-methylthiocoumarins 2 showed the chemical shift in the range 7.78 - 7.90 ppm. The difference between this proton and other aromatic protons was 0.34 - 0.53 ppm. IR spectra; The carbonyl bands of 2 were found in the range 1635 - 1650 cm⁻¹.

Table 2. The Mass and NMR (aromatic protons) spectra of 4-methylthiocoumarins $\stackrel{2}{\sim}$

No. Compounds		m/e (rel. intensity)	NMR (CDCl ₃) ppm 5-position other
2a ⁵⁾	х=н	176 (M,46), 148 (M-28,76), 147 (M-29,	100) 7.95 7.56 (3H,m)
2b ⁵⁾	$x=7-CH_3$	190 (M,45), 162 (M-28,100), 161 (M-29	,100) 7.78 7.20-7.30 (2H,m)
2c ⁵⁾	x=6-CH ₃	190 (M,48), 162 (M-28,95), 161 (M-29,	100) 7.78 7.44 (2H,s)
2₫	X=7,8-Benzo	226 (M,46), 198 (M-28,100), 197 (M-29	,79) 7.48-8.37 (6H,m)
2e ∼	X=7-C1	212 (M+2,9), 210 (M,24), 184 (40), 18	3 (47) 7.80 7.50 (2H,m)
		182 (M-28, 100), 181 (M-29,90)	

All products gave satisfactory microanalyses (C± 0.25%, H± 0.08%).

References and Notes

- 1) R. C. Elderfield, "Heterocyclic Compounds ", Vol. 2, John-Wiley & Sons, New York, (1951), p. 542.
- 2) A. Ruwet and M. Renson, Bull. Soc. Chim. Belg., 78, 449 (1969).
- 3) O. Meth-Cohn and B. Tarnowski, Synthesis, 1978, 56.
- 4) H. Nakazumi and T. Kitao, Chem. Lett., 1978, 929.
- 5) 2a; mp 126-127 °C(lit, 2) 124°C), 2b; mp 108-109°C (lit, 2) 110°C), 2c; mp 114-115°C (lit, 2) 120°C).